Skip to main content

k-means

无监督学习包含算法

  • 聚类
    • K-means(K均值聚类)
  • 降维
    • PCA

K-means聚类步骤

  • 1、随机设置K个特征空间内的点作为初始的聚类中心
  • 2、对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记类别
  • 3、接着对着标记的聚类中心之后,重新计算出每个聚类的新中心点(平均值)
  • 4、如果计算得出的新中心点与原中心点一样,那么结束,否则重新进行第二步过程

K-meansAPI

  • sklearn.cluster.KMeans(n_clusters=8,init=‘k-means++’)
    • k-means聚类
    • n_clusters:开始的聚类中心数量
    • init:初始化方法,默认为'k-means ++’
    • labels_:默认标记的类型,可以和真实值比较(不是值比较)
# 取500个用户进行测试
cust = data[:500]
km = KMeans(n_clusters=4)
km.fit(cust)
pre = km.predict(cust)

Kmeans性能评估指标

轮廓系数
SC_j = \frac{b_i-a_i}{max(b_j,a_i)}

注:对于每个点i 为已聚类数据中的样本 ,b_i 为i 到其它族群的所有样本的距离最小值,a_i 为i 到本身簇的距离平均值。最终计算出所有的样本点的轮廓系数平均值

  • 分析过程(我们以一个蓝1点为例)
    • 1、计算出蓝1离本身族群所有点的距离的平均值a_i
    • 2、蓝1到其它两个族群的距离计算出平均值红平均,绿平均,取最小的那个距离作为b_i
    • 根据公式:极端值考虑:如果b_i >>a_i: 那么公式结果趋近于1;如果a_i>>>b_i: 那么公式结果趋近于-1
结论

如果b_i>>a_i:趋近于1效果越好, b_i<<a_i:趋近于-1,效果不好。轮廓系数的值是介于 [-1,1] ,越趋近于1代表内聚度和分离度都相对较优。

轮廓系数API
  • sklearn.metrics.silhouette_score(X, labels)
    • 计算所有样本的平均轮廓系数
    • X:特征值
    • labels:被聚类标记的目标值

用户聚类结果评估

silhouette_score(cust, pre)

K-means总结

  • 特点分析:采用迭代式算法,直观易懂并且非常实用
  • 缺点:容易收敛到局部最优解(多次聚类)

    注意:聚类一般做在分类之前